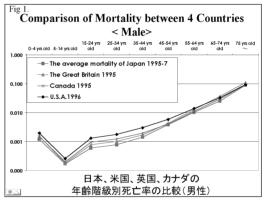
疾病死亡率の性年齢階級別に見た都道府県の分布特性と米国州別分布特性の比較、及びその比較に基づき算定された達成可能な死亡率曲線と削減目標死亡数による医療施策評価の提案

千葉県健康福祉部・理事

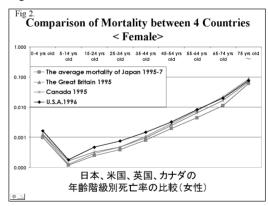
瀬上 清貴

都道府県ごとの疾病死亡率、および米国の人種別の疾病死亡率を性年齢階級別に並べて みると、ユニークな分布特性を示します。この特性を活用し、発想の転換により作成した、

新たな健康指標に基づいて、保健医療施策 を評価する方法を考案いたしましたので、そ の提案を行いたいと思います。


その方法とは、分布特性に基づく達成可能な死亡率曲線の提案、およびそれにより算定できる削減目標死亡数と実際死亡数の比較によるもので、医療施策の評価のみでなく健康施策の評価にも活用できるものと考えております。保健医療施策はある意味で過剰死亡削減をその目標としているとも言えるかと思います。しかしながら、これまで削減可能な目標数について具体的に明示するということは、なかなかできなかったに等しいと思います。今回の提案はその点でユニークなものと思います。

(Fig-1, 2)


始めに日本の他、米国、英国、カナダという4カ国の全死因に関して年齢階級別死亡率の特性をご覧になっていただきたいと思います。

男女ともに、生殖年齢直前に最低の死亡

Fig1

Fig2

率となり、生殖年齢に小さなhumpを有するものの、片対数グラフで直線性を示すという18世紀に提唱された死力に関するゴンペルツの法則にほぼ従っております。

[Fig-3, 4]

そこで、都道府県別の死亡率の分布を見てみたいと思います。

これは平成7・8・9年3カ年の日本人の死因別死亡数を死因別に、性年齢5歳階級別に3年間分加算した上で、その平均値を平成7年(95年)の国勢調査人口で除して得られた年齢階級別死亡率のうちの、全死因のものです。

男女を比較いたしますと、第1に全年齢で女性の死亡率の方が低いこと。そして第2に、

女性の高齢者の死亡率は、他の年齢から回帰した曲線よりもやや高い死亡率を示していることが分かります。

この箱ヒゲ図ですと47都道府県の分布が 見てとれます。真中の線が中央値、そしてハコの下のラインが25パーセンタイル、上の ラインが75パーセンタイルです。ヒゲはそれ ぞれと中央値との差の1.5倍までを取っておりまして、○は外れ値を示します。

この方法で見てみますと、各年齢階級で都 道府県が一定幅で分布していることが明確に 見えます。そして、その分布の幅は、隣接す る年齢階級における平均値との差分程度で あるということが明らかになっております。

Fig-5

次いで、米国の50州別の死亡率を検討させていただきます。

米国CDCのホームページ上にCDCワンダーというデータベースがこざいます。白人、黒人、その他人種という3区分によりICD9のレベルではありますが、日本にいながらにして、さまざまな死因分析を行うことのできる表作成ホームページです。

そこで日本人の死亡統計の分析に合わせて、93年~97年あるいは94年~98年という5年間について、データを性年齢5歳階級別(一部10歳階級別)に死亡数を手に入れて、人口とともに分析してみました。お示ししているものが、リクエストに基づいて送られてきた統計表を整理したものです。

Fig-6

加算死亡数を5年間の加算人口で除して得られました各年齢階級別死亡率につきまして、米国50州の分布を、日本人死亡率と同様に検討したわけですが、その結果、全死因では先ほど申し上げましたゴンペルツの法則によく従っていると思います。左が白人男性、右側が黒人男性のものです。黒人男性

Fig3

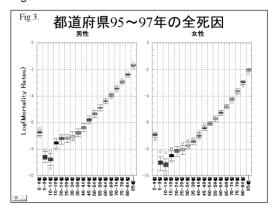


Fig4

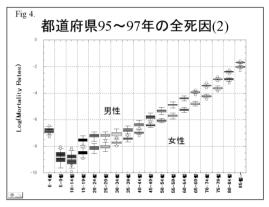
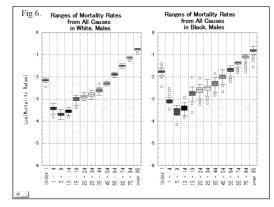



Fig5

Death Count, 1993-1997, E			Haland Ca											
ICD 001 to 9		VJE, ITM	Office St	20052										
Bates for Inf		100,000	on bishe											
Rates shown				. Islantos										
OR HER SELECTION	ICA AITHRICE	in the past in	0,000 114	De title										
	Under 1	1 - 4	0 - 4	5 - 9	10 - 14	15 - 19	20 - 24	25 - 34	35 - 44	45 - 54	55 - 64	65 - 74	75 - 84	over 85
	Year	vears	vears	VARANS	vears	vears	V488*8	vears	VHRPR	vears	vears	VARALIS.	vears	vears
Alahama	13443	82.4	3432	27.2	28.8	59.5	85.9	1505	3131	637.9	1380.4	2826.9	58013	13239.4
Alaska	1016.1	0.0	211.8	51.2	0.0	1005	0.0	58.7	132.7	1741	969.5	1989.6	5501.0	8720.9
Arizona	1645.7	1065	3883	303	35.7	55.8	80.6	1199	2299	5104	1150.6	2180.1	5483.4	12571.4
Arkansas	1223.2	69.9	308.1	29.8	31.0	50.8	103.6	163.7	308.0	691.7	1412.4	2957.2	5857.7	13563.5
Cal	1350.8	57.8	312.1	21.3	22.6	59.6	81.3	127.7	296.8	622.0	1328.7	2658.0	5535.9	13602.8
Colorado	1394.0	75.8	333.7	24.8	17.2	49.7	87.1	98.6	2452	443.9	1029.3	2400.0	5028.1	15154.8
Con	1419.5	503	327.3	17.4	30.1	55.4	82.8	1509	3309	5621	1218.2	2342.7		12123.7
Delaware	1030.8	58.9	252.8	20.9	145	45.3	70.2	175.0	3286	577.4	1520.3	2949.7	6591.2	13197.2
D.G.	1805.1	97.2	491.7	35.1	43.9	135.6	177.4	237.6	509.3	8807	1517.0	2638.5	5433.1	12744.5
Florida	1248.2	73.7	309.8	285	26.8	52.1	106.4	233.5	370.1	6108	1279.9	2515.1	55949	13114.0
Georgia	1333.1	60.8	320.8	28.9	24.0	48.5	87.6	147.5	291.0	6205	1394.4	3037.9	6132.5	12489.3
Hawaii	1057.8	35.7	2422	0.0	0.0	31.3	0.0	25.3	93.2	3306	603.2	776.8	1836.0	3539.8
daho	6623	109.3	187.6	0.0	69.5	2123	0.0	65.6	542	247.8	1310.0	2058.8	4712.0	7272.7
llinois	1697.4	65.9	402.5	30.2	33.5	76.7	95.0	1785	351.7	667.9	1433.6	3057.5		14743.8
indiana	1605.9	96.0	402.1	32.1	36.6	46.8	87.1	153.5	289.5	543.2	1361.5	3154.8	6301.7	15398.7
iowa	1855.4	39.8	4112	21.9	15.4	46.0	69.4	1101	211.6	473.0	1298.2	2880.7	5634.6	13210.3
Kansas	1744.3	65.5	417.2	28.4	383	61.9	1103	129.8	289.8	559.6	1330.8	2642.7	5768.7	14146.1
Kentucky	1227.4	55.7	299.8	35.1	19.2	53.4	59.7	141.3	2387	597.7	1486.6	3241.9		13373.6
ouisiana	1326.4	69.1	329.8	29.6	26.0	53.8	96.5	1644	305.7	652.6	1431.0	2992.4	6152.7	13791.3
Maine	2247.2	132.6	536.5	82.3	0.0	0.0	0.0	41.0	59.4	279.7	507.6	2459.0	4571.4	20000.0

Fig6

の方が各年齢の死亡率がやや高めで、分布 の幅が大きめですが、下方の外れ値が多いよ うです。

[Fig-7]

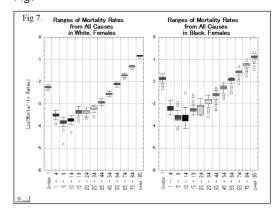
これは、女性に関して白人と黒人を並べたものであります。同様のことが言えるのではないでしょうか。

次に、3大死因に限定して検討させていた だきます。

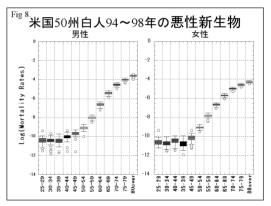
Fig-8

まず悪性新生物の白人ですが、こちらは 94年~98年のデータを用いております。

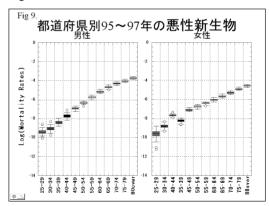
ヒステレーシスカーブとも言えるような状態の死亡率曲線を描いております。壮年期に、ある意味で先ほど申し上げた直線性に 比べて下方へシフトしているというような状態であると考えます。


Fig-9

これが日本人でありますが、今申し上げたようなヒステレーシスまでは、いっていない状態です。


(Fig-10)

両方を比較して見ますと、その違いが顕著に認められるところです。男女とも全年齢で、日本人の方が高い死亡率を示していることがわかります。


Fig7

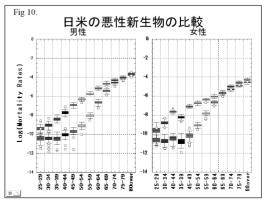

Fig8

Fig9

Fig10

(Fig-11)

続いて心疾患です。米国の男女について 見てみました。

[Fig-12]

そして、日本人の男性、女性です。

[Fig-13]

これを重ねて見ますと、60歳より前では、 日本人の方が死亡率が高いわけですが、60 歳を超えると心疾患における死亡率は、米 国人が高まり日本人が低いということです。 男女とも同様の傾向が認められます。

また、心疾患は、全年齢で男性の方が高いようです。

[Fig-14, 15, 16]

次に脳血管疾患です。

脳血管疾患については、このような状態

Fig13

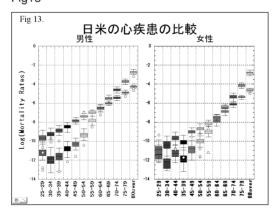


Fig15

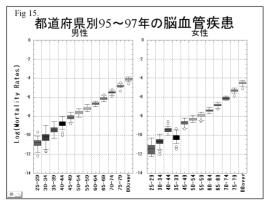


Fig11

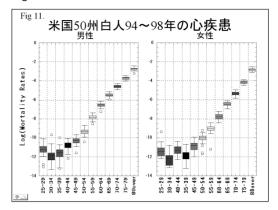


Fig12

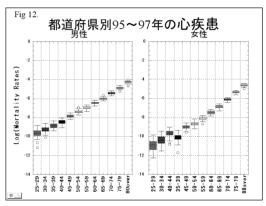


Fig14

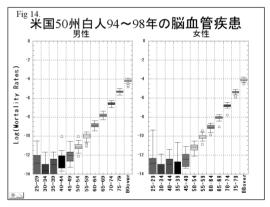
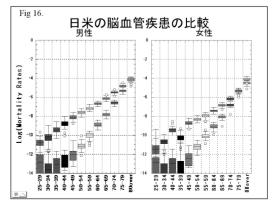



Fig16

であり、比較してみると、やはり先ほどと同様、日本人の方が若い年齢では高い死亡率 を示しております。

【スライド-1】

このように性別、人種別に見ますと、生活文化習慣をある程度同一にしている人口集団の中で、州間ないし都道府県間でみれば、各年齢階級にある程度の幅で死亡率が分布しているわけであります。そこでこうしたデータを用いて作成したものが、SALT期待死亡率です。

先ほど申しました第一四分位、下から25 パーセンタイルを用いて死亡率曲線を作り、 この曲線上から各年齢別の死亡率を計算し たものです。

(Fig-17, 18)

これが男性、女性における日本人(●)、 米国白人(■)、米国黒人(▲)のSALT期 待死亡率曲線です。この期待死亡率に基づ きまして、各歳人口を乗じて得られた期待 死亡数と実測死亡数との差を、死因別 SALT=達成可能な削減目標死亡数として おります。

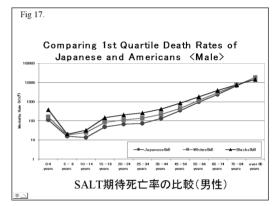
[Fig-19, 20]

このSALTを日米、カナダ、英国について 男女別に算出したのでご報告しております。

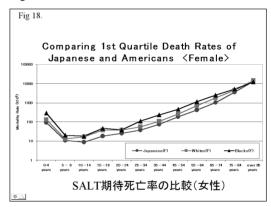
Fig19

Each QUARTILES	Total	0-4 years	5 - 9 years	10 - 14 years	15 - 19 years	20 - 24 years	25 - 34 years	35 - 44 years	45 - 54 years	55 - 64 years	65 - 74 years	75 - 84 years	over 85 years
Japanese(M)		113.0	15.7	13.7	47.9	66.3	72.0	130.0	346.6	946.0	2362.6	6578.0	17994.5
Whites(M)		161.0	18.7	248	83.5	113.0	136.2	2160	450.3	1159.6	29 69.5	7139.4	17778.0
Blacks(M)	-	382.8	20.7	31.8	147.2	200.1	259.2	4067	838.6	1894.4	3779.5	7576.8	14379.5
Number of Dec	ths												
Japanese(M)	494003	3600	603	60.5	2212	3325	6388	11591	36808	75279	123203	141941	88150
Whites(M)	4952036	68297	7763	10685	38787	49783	140495	239405	343284	584495	1187305	1445752	834797
Blacks(M)	753915	31104	2615	3233	14437	20029	50165	50183	89611	111999	153324	131758	65452
Expected Deat	hs by eacl	n quartile											
Japanese(M)	470943	3447	523	521	2085	3397	6056	10594	33611	70893	116357	137145	86104
Whites(M)	4600488	64217	7003	9493	31254	42113	114471	191815	296083	511504	1077016	1411833	821384
Blacks(M)	585630	29667	1529	2325	70.530	13041	33376	47147	61710	83673	127389	115406	57963
Differences (SA	LT)												
Japanese(M)	23045	153	80	84	127	18	332	997	3197	4384	6546	4794	2045
Whites(M)	357.548	4072	760	1192	6927	7470	26024	47770	47201	74691	88289	33979	12873
Blacks(M)	7.6828.5	7437	1086	908	3907	6988	16849	31047	27901	28286	25935	16352	7455
SALT Rates	Total	0-4 years	5 - 9 years	10 - 14 years	15 - 19 years	20 - 24 years	25 - 34 years	35 - 44 years	45 - 54 years	55 - 64 years	65 - 74 years	75 - 84 years	over 85 years
Japanese(M)	4.7%	43%	13.3%	13.9%	5.7%	0.5%	5.2%	8.4%	8.7%	5.0%	5.6%	3.4%	2.3%
Whites(M)	7.1%	6.0%	9.8%	11.2%	18.1%	15.4%	18.5%	19.9%	13.7%	12.8%	7.4%	2.3%	1.5%
Blacks(M)	22.3%	4.6%	41.5%	28.1%	27.1%	349%	33.6%	38.7%	31.1%	25.3%	769%	12.4%	11.4%

スライド1


SALT期待死亡率

Systematically Attainable Longevity Target


年齢階級別死亡率の特性

- 州別、都道府県別に見ると、分布が一様でない(分 散が大きい)
- ・ 平均値と第1四分位との較差は安定的である
- 過剰死亡の低減を政策にする場合、目標値には、 安定的で到達可能な数値が望ましく、平均値プラス マイナス標準偏差では、安定性に欠けるため、平均 値若しくは第1四分位値がより適切である
- 少し低めに目標値を設定することが、より政策目標としては望ましく、文化人類学的差異を考慮した上で、それぞれの社会人口集団の第1四分位値を以って、目標死亡率とすることが、推奨される

Fig17

Fig18

Fig20

Fig 20.	Com	parır	ig SA	LI R	ates	Estim	atea	By	:ach	Qua	rfile:	rem	ale
Each QUARTILES	Total	0-4 years	5 - 9 years	10 - 14 years	15 - 19 years	20 - 24 years		35 - 44 years	45 - 54 years	55 - 64 years	65 - 74 years	75 - 84 years	over8
Japanese(F)		92.0	10.4	8.8	18.4	25.7	37.1	74.6	185.2	412.7	1029.3	3572.9	12742
Whites(F)		130.6	13.1	164	37.5	37.3	55.3	107.7	255.5	710.3	1805.4	4547.8	14194
Blacks(F)		295.7	20.4	18.2	45.8	38.8	110.7	227.8	468.0	11343	2445.5	51462	12042
Number of Dec	oths												
Japanese(F)	414454	2873	401	384	843	1316	37.50	6592	19094	34397	68845	132428	1447.
Whites(F)	4934400	52132	5615	6431	15205	15539	51671	107556	196880	375462	878262	1490695	17389
Blacks(F)	455077	24857	2051	1900	3720	5672	22565	43377	54582	80477	132158	152860	1307
Expected Deal	ths by eacl	h quartile											
Japanese(F)	393663	2677	334	379	760	1231	3036	6158	18026	32474	63121	124933	1400
Whites(F)	4440387	49301	4824	5939	13094	13074	45493	94902	171854	338437	824963	1405319	1 69 33
Blacks(F)	557059	22246	1507	1292	3179	2594	7.5805	31397	41547	68374	115294	135877	1179
Differences (SA	ALT)												
Japanese(F)	21373	202	75	65	83	85	114	434	1048	1923	5724	7495	41
Whites(F)	274019	2837	789	492	2111	2465	6178	12454	25026	36830	54199	85376	450
Blacks(F)	98018	2605	544	608	531	3978	6760	12002	13035	12040	16864	14983	129
SALT Rates	Total	0-4 years	5 · 9 years	10 - 14 years	15 - 19 years	20 - 24 years	25 - 34 years	35 - 44 years	45 - 54 years	55 - 64 years	65 - 74 years	75 - 84 years	over 8 years
Japanese(F)	52%	7.0%	18.2%	149%	9.8%	4.5%	3.6%	6.6%	5.4%	5.6%	8.3%	5.7%	2.5
Whites(F)	5.4%	5.4%	14.1%	7.7%	13.9%	15.9%	12.0%	11.8%	12.7%	9.8%	42%	5.7%	2.6
Blacks(F)	15.0%	10.5%	26.5%	32.0%	14.3%	543%	30.0%	27.7%	23.9%	15.0%	12.8%	11.1%	9.9

[Fig-21]

例えばこれを、千葉県のSALTおよびSALT率という形でお示ししますと、千葉県では男性で10大死因の合計が実質死亡数1万7,181人ですが、この削減可能な死亡数1,686人=9.8%は何らかの保健施策を充実すること、医療を充実することで、近々に削減できる数ということになります。特にSALT率が高い自殺、糖尿病、老衰に関してはしっかり施策を行うこと、がんに関しては胃と大腸に問題があること、くも膜下出血も問題があること、が明らかとなっております。

Fig-22

また、このSALT期待死亡率に基づき、簡易生命表の手法でSALT改善生命表を作成しております。

三重県の場合は、心疾患を156人削減できれば0.222年平均余命が高まるということです。

【スライド-2,3】

全国の場合、平成7年~9年のデータにより得られたSALT期待平均余命は、男性が77.43年、女性が83.95年でありました。これを現在の簡易生命表による平均余命と比較しましたところ、平成11年と12年の間で、この期待SALT平均余命を上回っております。つまり3.5年の死亡数削減の努力の結果、削減達成ができたと考えるところです。

疾病死亡率の性年齢階級別に見た、都道府県の分布特性と米国州別分布特性を比較検討したわけですが、この中で、SALT期待平均余命を組み合わせて導入すれば、あらかじめ導入しようという施策が平均余命の伸長にどの程度効果が上がるかの予測もすることが可能です。

こうした方法を導入して、医療行為と期 待される健康余命の伸長を算定することも 可能であり、今後の課題としたいと考えてお ります。

Fig21

Fig 21.	千美	葉県(の死	因別	SAL	T			
要約	千葉県のSALT及びSALT率一覧表								
				女性					
		SALT	SALT率	実死亡数	SALT	SALT率	実死亡数		
	10大死因合計	1686	9.8%	17181	1667	12.4%	1347		
10大死因	悪性新生物	531	7.7%	6856	342	8.1%	422		
	心疾患	425	14.0%	3026	509	17.5%	290		
	脳血管疾患	159	6.1%	2623	217	7.8%	278		
	肺炎	168	10.6%	1588	216	15.7%	137		
	不慮の事故	6	0.6%	1004	50	9.5%	52		
	自殺	168	21.0%	799	62	18.9%	32		
	肝疾患	58	13.1%	446	25	14.2%	17		
	腎不全	35	12.5%	276	19	6.9%	27		
	糖尿病	61	20.4%	298	40	15.6%	25		
	老衰	76	28.9%	264	187	30.1%	62		
(再掲)	胃の悪性新生物	206	14.7%	1401	90	12.8%	70		
	肺の悪性新生物	61	4.6%	1348	76	15.3%	49		
	大腸の悪性新生物	146	18.1%	809	115	19.2%	60		
	脳内出血	97	13.3%	732	93	15.8%	58		
	くも膜下出血	39	17.0%	232	67	18.5%	36		
l	急性心筋梗塞	111	10.3%	1084	132	14.7%	89		
	交通事故	38	8.3%	453	28	16.5%	16		

Fig22

Fig 22.

SALTによる平均余命の延長 ^{三重県の場合}

死亡原因	実死亡数 (人)	SALT 削減目標 死亡数 (人)	SALT 達成時 延長余命 (年)
心 疾 患	1165	156	0.222
交 通 事 故	197	61	0.179
脳血管疾患	1113	134	0.164

スライド2

結語

- ・ 疾病死亡率の性年齢階級別に見た都道府県の 分布特性と米国州別分布特性を比較検討した
- より安定的な過剰死亡数削減目標を設定する場合、それぞれの文化人類学的特性の似通った社会人口集団の死亡率の第1四分位値による死亡率曲線を「到達可能な目標死亡率曲線」として用いることが望ましい。
- それぞれの社会人口集団に対して算定された、 削減目標死亡数を用いれば、導入された健康医 療施策が設定期間内に有効に機能したか否か を、客観的に評価することが可能となる

スライド3

結語2

- 政策立案の段階において、期待効果を比較検討 することができる
- SALT期待平均余命を組み合わせるならば、予 め導入しようとする施策が、平均余命の伸張に どの程度効果が上がるかを予測することが可能 となる
- この方法を活用すれば、医療行為と期待される 健康余命の伸張を算定することも可能であり、今 後の課題としたい